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Quantization as Selection Problem
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Quantum systems exhibit a smaller number of energetic states than classical systems (A.
Einstein, 1907, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen
Wärme, Ann. Phys. 22, 180ff). We take up the selection criterion for this in two parts.
(1) The selection problem between classical and nonclassical mechanical systems is
formulated in terms of possible and impossible configurations (among others, this
overcomes the difficulties occurring when discussing the behavior of quantum particles
in terms of paths). (2) The (nonclassical) selection of the quantum states is formulated,
using recurrence relations and the energy law. The reformulation of “quantization as
eigenvalue problem” in terms of “quantization as selection problem” allows one to derive
Schrödinger’s stationary equation from classical mechanics through a straightforward
and unique procedure; the nonstationary and multibody equations are subsequently
acquired within the same frame. In contrast to the (classical) eigenvalue problem, the
(nonclassical) selection problem can be formulated and solved without any reference to
additional a priori assumptions on the nature of the quantum system, such as the wave-
corpuscle dualism or an underlying wave equation or the existence of Planck’s finite
action parameter. The existence of such an additional parameter—as the only additional
one—is inherent in the procedure. Within our axiomatic-deductive approach, we modify
classical mechanics only where it itself indicates an inherent limitation.
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1. INTRODUCTION

From the very beginning (Planck, 1900), the development of quantum physics
is indivisibly connected with the discussion of its relationship to classical physics.
And even after the overwhelming success and general acceptance of quantum
theory, it had to be stated, that “It is in principle impossible, however, to formulate
the basic concepts of quantum mechanics without using classical mechanics”
(Landau and Lifschitz, 1959). As a consequence, the foundation of quantum
mechanics (QM) can be done in two fundamentally different ways.
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Way 1 Taking classical mechanics (CM) as necessary, but not sufficient and,
consequently, needing additional assumptions, such as
– to restrict the energy spectrum to the values n · hν (Einstein, 1907;

Planck, 1900) or to n
2 hν (Bohr, 1913),

– to “distinguish” (Heisenberg, 1977) or to “select” (Messiah, 1999; Pauli,
1926) the values n · h of the action integral

∮
pdq (n—integer; in con-

trast to CM, the action integral is not subject to a variational principle),
– to suppose the existence of h and to abandon the classical paths

(Heisenberg, 1925),
– to suppose the existence of h and of a wave function being the solution

of an eigenvalue problem (Schrödinger, 1927).
Way 2 Alternatively, taking CM as necessary and sufficient, i.e., supposing,

that such additional assumptions are not necessary (Enders and Suisky,
Einführung in die Quantenfeldtheorie des Festkörpers, manuscript in
preparation; Suisky and Enders, 2001). Speeding ahead, we note, that ac-
cording to Bohr’s main prepositions (Bohr, 1913), one has to use for this a
representation of CM, where only the state conservation, but not the state
change is axiomatically fixed. Such representations have been developed
by Euler (Euler, III–1) and by Helmholtz (1911). Furthermore, Bohr’s and
Schrödinger’s theories show, that Helmholtz’s rule, that a system changes
its extension when exchanging work with the environment, holds in a
certain sense within QM, too. And within both Bohr’s and Schrödinger’s
theories, energy and extension are internal system parameters.

Thus, this contribution is organized according to the following key prereqisite
for succeeding along Way 2.

• Euler’s representation of CM allows for formulating well-defined relations
between classical and nonclassical equations of motion, since only the
principles of state conservation are fixed axiomatically, while—in contrast
to Newton’s axiomatics—that of state change are not.

• Helmholtz’s treatment of the energy conservation law induces a selec-
tion problem between possible and impossible configurations of classical
systems.

• Euler’s method of maxima and minima can be generalized, in order to
derive a nonclassical representation of the energy law, the stationary
Schrödinger equation being a condition for its validity.

• Einstein’s criterion for the difference between classical bodies and atomic
aggregates (the latter ones should exhibit less stationary states than those)
can be reformulated in terms of Whittaker’s integral representation of solu-
tions of differential equations, in order to solve the stationary Schrödinger
equation as a selection problem rather than as an eigenvalue problem.
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• Euler’s principles of state conservation and of state change of classical
bodies can be generalized to classical conservative systems and be refor-
mulated in terms of quantum-mechanical entities, in order to derive the
time-dependent Schrödinger equation.

Moreover, we will sketch how this approach can be exploited for deriv-
ing two fundamental properties of multibody quantum systems, viz., the per-
mutation symmetry of the wavefunction and the indistinguishability of identical
particles. We will outline, how this approach justifies the method of field quan-
tization through normal-mode expansion, where the quantization concerns only
the temporal, but not the spatial dependence of the field variable. In the Sum-
mary, we will also discuss Schrödinger’s analysis of the relationship between
CM and QM.

2. THE MODIFICATION OF NEWTON’S AXIOMATICS BY EULER

2.1. Euler’s Treatment of Classical Mechanics

Leonhard Euler (Euler, 1911, III–1, III–11) was the first who applied the
calculus to all areas of mathematics and mechanics of his time, and he devel-
oped new areas. Moreover, he worked out an axiomatics of mechanics, where
only Newton’s 1st axiom concerning the conservation of state is retained as an
axiom, while Newton’s 2nd and 3rd axioms concerning the change of state are
treated as problems to be solved. This allows for introducing alternative equa-
tions of motion without loosing the contact to CM. (It also resembles the removal
of Euklid’s 5th axiom leading to non-Euklidean geometries). The logical struc-
ture of Euler’s axiomatics suggests to formulate these alternatives as selection
problems.

We remark, that

• Newton’s and Euler’s notion of state corresponds to the nowadays notion
of stationary state;

• D’Alembert (1743) and Maupertuis (1768) also have modified and devel-
oped Newton’s axiomatics;

• originally, the quantum conditions were called state conditions
(“Zustandsbedingungen,” see Pauli, 1926).

Euler has developed a unified concept of bodies and forces. There is only one
type of bodies and only one type of forces. The conservation of state is not due to
a force, but due to the very nature of the bodies. The latter is given through their
general properties. These are extension, movability, inertia and impenetrability.
The impenetrability is the fundamental, “essential” property, from which the other
three properties can be derived.
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The forces appear only due to the competition for space occupation. Thus,
the interaction between bodies is primarily that of elastic collisions, where forces
are created in just that amount, which is necessary for preventing the penetration
of one body into another body. Hence, the magnitude of the force (and of the
action it performs) is minimum.

We remark, that the elastic collision represents the only genuine classical-
mechanical interaction. It exhibits no interaction constant; this is another reason
for the fact, that CM became that protophysics, on which methodologically all
other physical disciplines are built.

2.2. Euler’s Axioms—Equations of State

The motion of bodies is described in terms of state conservation and state
changes. The existence of (stationary) states is postulated in the following axioms.

Axiom E0 Every body is either resting or moving. This means, that the sub-
sequent axioms E1 and E2 are not independent of each other; they
exclude each other and, at once, they are in harmony with each other
(Euler, II–5b).

Axiom E1 A body preserves its state at rest, unless an external cause sets it in
motion.

Axiom E2 A body preserves its state of straight uniform motion, unless an external
cause forces it to change this state.

Let us quote three observations, which justify the separation of the state at
rest (“rest” refers to a given reference system, of course).

• According to Malebranche (1906), “nothing” (no motion, no speed) is not
the limit of “something existing” (motion, finite amount of speed).

• Dirac has argued for the existence of an absolute motion (Dirac, 1980).
• The distinction between rest and motion plays an important role in the

transformation properties of the Hamilton–Jacobi equation (Faraggi and
Matone, 1998; their path from CM to QM fails for the state at rest being
absent within QM, indeed, cf. below).

The state variable is the velocity vector, v (for Euler, the mass of a body
is always constant—the use of the velocity rather than the momentum as state
variable may be caused by the fact, that it is closer to Leibniz’s living force, mv2).
Thus, the equation of state reads Z = v = 0 for the state at rest and Z = v = const
for the state of straight uniform motion.

Note, that when one takes also the position, x, as state variable, one faces
the problem, that the state is changed even in the absence of an external cause for
doing so (Weizsäcker, 2002).
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2.3. Equations-of-State-Change and Equations
of Motion—A Selection Problem

The change of the state variable under the influence of an external cause is
described through the equation-of-state-change. Here, it turns out to be crucial,
that there are two quite different possibilities for the relationship between the state
variable and its change.

Newton–Eulerian Assumption. The change of state is independent of the state
itself. Thus, the equation-of-state-change reads dZ = dv(t) = 1

M
Fdt . For con-

stant mass, M , this leads to the Newtonian equation of motion, M ẍ = F [first
published in (Euler, II–5a) in explicit calculus form].

Non-Newton–Eulerian Assumption. The change of state does depend on the state
itself. In this case, there should exist a function f (v(t)) describing how dv
depends on v; say, d [f (v(t)) · v(t)] = 1

M
Fdt . Since f (v) is dimensionless,

there is a reference velocity such, that f (v) = f (v/vref). Applying quite general
requirements, the new function f (v/vref) can be calculated, and one arrives at
special-relativistic relations, in particular, at the Lorentz transformation (Suisky
and Enders, 2005). (Another derivation of the Lorentz transformation without
referring to electrodynamics can be found in Mittelstaedt, 1995.)

Now, while Newton’s 2nd law fixes the manner of state change to the first
possibility, Euler’s axioms allow to choose between both possibilities.

In other words, there is a selection problem between nonrelativistic (dv does
not depend on v) and relativistic CM (dv does depend on v). It makes clear,
which kind of modifications of the axiomatics of CM is necessary for obtaining
non-Newtonian or even nonclassical theories.

3. CLASSICAL CONSERVATIVE SYSTEMS

The selection problem between CM and QM is much more sophisticated
than that between relativistic and nonrelativistic mechanics, because the very
foundation of CM is affected, viz., the general properties of bodies. For this, one
has to resort to the more general energetic state description. Helmholtz (1911) has
provided the strict foundation of the mechanical energy law sought for. He devel-
oped an ingenious method for the definition of new mechanical quantities through
special combinations of mechanical concepts and logical relations between them.
The lack of space forces us to make just some few references to Helmholtz’s
work. In order to concentrate onto the essentials, we assume, that the center of
gravity of the system under consideration stays at the origin of the coordinate
system and that the minimum of the potential energy of a conservative system
equals zero.
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3.1. Energy Law and Extension

The energy law of CM can be derived via direct integration of Newton’s
equation of motion,

M ẍ(t) = F(x(t)) (1)

by means of its multiplication with ẋ (Euler, III–1, §§74–75).

M ẍ · ẋ = d

dt

(
M

2
ẋ2

)
= F · ẋ = d

dt

∫ x

F · dx′ (2)

provided that there is a function Ṽ (x) such, that∫ x

x0

F(x′) · dx′ = Ṽ (x) − Ṽ (x0); F(x) = ∇Ṽ (x) (3)

Euler called this function “effectiveness” (“Wirksamkeit”). Then, Eq. (2) yields
the conservation law (cf. also Euler, II-5b)

M

2
ẋ(t)2 − Ṽ (x(t)) = const = E (4)

Helmholtz (1847) was the first who realized the universal relevance of this
constant of integration, E. His more axiomatic approach (Helmholtz, 1911), how-
ever, starts with the conservation of “living forces” (we will use the modern
notions).

Leibniz’s law. The total kinetic energy, T (v), of a system assumes the same value,
when the system returns to the same configuration, C, (cf. Leibniz, 1982).

Helmholtz’s conclusion. In this case, despite of being defined in terms of velocity,
the kinetic energy is a pure function of the coordinates; the existence of such a
function has to be required.

Then, d
dt

T (v) = F · ẋ is the total differential of a function depending soleily
on the coordinates, and Eq. (2) can be written as, say,

d

dt
T (v) = d

dt
[−V (x)] (5)

provided, that F = −∇V (x) (the minus sign will be discussed below). The latter
is a condition for the spatial arrangement of the forces within the system, viz.,
curlF ≡ 0.

Upon simple integration, Eq. (5) becomes the energy law of CM,

V (x) + T (v) = E = const (6)

Of course, within CM, the constancy of the l.h.s. is realized through the motion
along a path curve: x = x (t), v (t) = ẋ (t), where the increase of the one term is
compensated by the decrease of the other term.
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We will call the stationary state with the value E of total energy shortly the
“state E.”

In Eq. (5), Helmholtz has set −V (x) rather than +Ṽ (x), in order to express
through the potential energy function V (x) the “disponible work storage” of the
system. [The work, A, is not defined through the motion along trajectories accord-
ing to the laws of motion, but through the slow displacement of a body, say, from
x1 to x2, where the internal forces are balanced out by an external force. If there
is a potential energy function, V (x), then, A = V (x2) − V (x1).]

Furthermore, V (x) has the advantage over the function Ṽ (x) = −V (x) of
more directly expressing

Helmholtz’s rule. A system changes its extension in configuration space when
exchanging work with the environment.

This rule can be generalized to the case of exchanging energy.

Generalized Helmholtz’s rule. A system changes its extension in configuration
space when exchanging energy with the environment.

For the sake of a more symmetrical treatment of space and momentum
variables, we make the following complementary statements.

Complementary Leibniz’s law. The energy of relative positions of a system, V (x),
is unchanged, when it returns to the same momentum configuration, P .

Complementary Helmholtz’s conclusion. Despite of being defined in terms of
position, the potential energy can be written as a pure function of the momenta;
the existence of such a function has to be required.

Taking for this function the expression E − T (p), we reobtain the energy con-
servation law (6), where the velocities are replaced with the momenta. Choosing,
again, the minus sign [this time, at the function T (p)], we deal with the kinetic
energy function, T (p), which, among others, has the advantage over −T (p) of
more directly expressing the following relationship between energy and extension
in momentum space.

Complementary Generalized Helmholtz’s rule. A system changes its extension in
momentum space when exchanging energy with the environment.

Thus, generally speaking, the classical functions Vcl[C] = V (x) and Tcl[P ] =
T (p) provide relationships between energy and extension in space and momentum
space, respectively. For the linear harmonic oscillator, these relationships read

E = V (xmax) = κ

2
x2

max and E = T (pmax) = 1

2M
p2

max (7)

The oscillator’s extensions in space and momentum space are represented
through xmax and pmax, respectively.
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These relationships induce ordering relations, which will proof to be useful
when considering nonclassical systems, viz., for each ordered set E1 < E2 < · · ·
of a bounded system, there are ordered sets xmax,1 < xmax,2 < · · · and pmax,1 <

pmax,2 < · · ·.

3.2. Possible and Impossible Configurations

Because of the validity of the equations of motion in whole space and to the
freedom in the choice of the initial conditions, x0 and p0, a body can move to any
other location (not being occupied by another body—in what follows, we will
always understood, that Euler’s ban is obeyed). For a system, this means, that all
configurations are possible. (Each possible position can serve as initial condition;
the phase space orbit is a sequence of possible initial conditions.) However, for a
conservative system in a fixed state E, the initial (momentum) configurations, x0

and p0, are not independent of each other, but interrelated through the energy law
as T (p0) + V (x0) = E. As a consequence, not all (momentum) configurations
are possible in state E.

In fact, the inequality T (p0) ≥ 0 implies the most important condition

V (x0) ≤ E (8)

It expresses the fact, that the work storage is never larger than the total energy. This
fact implies the limitation, that no configuration, x, can be assumed, where V (x) >

E. In other words, in each fixed state E, the set of possible configurations, C
poss
cl ,

does not comprise the whole configuration space, Call, but is bounded such, that

C
poss
cl = C

poss
cl (E) = {x|V (x) ≤ E} ⊂ Call = {x} (9)

For our model system, we have |x(t)| ≤ xmax(E), cf. Eq. (7).
Hence, by virtue of the energy law, the configuration space, Call, is divided

into two disjunct domains, C
poss
cl (E) and C

imposs
cl (E) = C

poss
cl (E) \ Call. An analo-

gous division takes place for the set of all momentum configurations.
This inherent limitation of the motion classical-mechanical systems implies

the following

Point of generalization (1). Under which conditions or for which mechanical
systems this division into possible and impossible configurations takes not
place, and which is the mechanics describing such systems?

3.3. Euler’s Method of Maxima and Minima: Internal
and External System Parameters

According to Einstein’s criterion and in view of the structural stability of
the electronic states in atoms, we need a representation of the energy not as a
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continuous function of continuous external variables (such as the initial condi-
tions), but as an internal system parameter.

Internal system parameters are the mass and other material parameters, but
also the extremalous values of the functions V (x) and T (p), e.g., Vmin = 0 and
Tmin = 0. According to Euler, these extremalous values can be obtained by means
of the calculus, independent of the actual motion of the system. The minima of the
potential energy function V (x) define the stable equilibrium states of the system.

In contrast to these internal parameters, the initial conditions, x0 and p0 (we
consider still the linear oscillator), are external parameters. All functions of them
are external parameters as well, in particular, the total energy, E = T (p0) + V (x0),
and the maximum possible values of the potential and kinetic energies in state
E, viz., V

poss
max (E) = V (xmax) = E and T

poss
max (E) = T (pmax) = E, respectively. In

contrast to the minimum possible values, V poss
min = Vmin = 0 and T

poss
min = Tmin = 0,

the values V
poss

max (E) and T
poss

max (E) are not extremalous values of the functions V (x)
and T (p), respectively.

Thus, the actual (stationary) state of a system is determined by both, internal
and external parameters.

There is one important exception, however. The state at rest is uniquely and
determined through the condition

V = Vmin and T = Tmin (10)

Here, both the potential and the kinetic energies assume extremalous values.
This means, that the state at rest is completely governed by the “internal principles.”
In other words, we have

Claim 1. Parameters the values of which are determined by the condition V =
Vextrem and T = Textrem are, for this case, internal parameters.

As an example, we note that in the state at rest of the harmonic oscillator not
only the minimum, but also the maximum extensions in space and in momentum
space are determined by this condition and, thus, are internal parameters. For our
model system, this refers to the state at rest with x(t) ≡ 0 and p(t) ≡ 0. This
suggests

Claim 2. Sets of states, where the minimum and the maximum extensions in space
and in momentum space belong to extremalous values of appropriate functions,
are sets of internal states.

Thus, there is another

Point of generalization (2). Under which conditions not only the minimum, but also
the maximum extensions in all states E are internal parameters and obtainable,
like those, by means of the calculus? In such a case, according to the generalized
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Helmholtz’s rule and its complement, the total energy would become an internal
system parameter, too.

3.4. Application of Euler’s Principles of State Change
to the Linear Harmonic Oscillator

3.4.1. The Principles of State Change for Classical Bodies

Following (Euler, II–5a), the changes of position and velocity during the time
interval dt are

d

(
x

v

)
=

(
0 1

0 0

) (
x

v

)
dt +

(
0 0

0 1
M

) (
0

F

)
dt =

(
v

1
M

F

)
dt (11)

The matrices of internal and external transformations,

Ûint =
(

0 1

0 0

)
and Ûext =

(
0 0

0 1
M

)
(12)

belong to the internal and external principles of state change, respectively. They
do not commute: ÛintÛext �= ÛextÛint. This means, that the internal and external
transformations cannot be reduced onto each other, i.e., that the internal and the
external principles of state change are independent of each other.

Equation (11) displays the following principles of state change of classical
bodies (some of them were already described above). Up to order dt , it holds true,
that

(CB1) the changes of state quantities (dv) depend only on the external causes (F )
(mediated through the external transformation Ûext), but not on nonstate
quantities (x); in particular, dv = 0, if F = 0;

(CB2) the changes of the state quantities (dv) are independent of the state quan-
tities (v) themselves;

(CB3) the changes of nonstate quantities (dx) depend directly only on state quan-
tities (v) (mediated through the internal transformation Ûint); the external
causes (F ) affect the nonstate quantities (x) only indirectly (via state quan-
tities, v);

(CB4) the changes of state (dv) and of nonstate quantities (dx) are independent
of each other;

(CB5) as soon as the external causes vanish, the body remains in the state assumed
in this moment: Z(t) = const = Z(t1) = v(t1) for t ≥ t1, if F (t) = 0 for
t > t1.

As these principles reflect Eq. (11), we see here an example of the general
rule, that the most fundamental differential equations w.r.t. time are of first order
(cf. Enders, 1996).
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Further, with ddt = dF = 0, the second-order changes read

dd

(
x

v

)
=

(
0 1

0 0

)
d

(
x

v

)
dt

=
(

0 1

0 0

) (
0 0

0 1
M

) (
0

F

)
dt2 =

( 1
M

F

0

)
dt2 (13)

The upper line contains Newton’s equation of motion (M = const); the lower
line shows, that, up to second order in dt , an external force does not change the
acceleration.

3.4.2. The Principles of State Change for Classical Conservative Systems

In this paragraph, we will show, that the principles of state conservation and
state change for classical bodies, CB1 · · · CB5, apply cum grano salis to classical
conservative systems as well.

Consider the linear harmonic oscillator as typical example. As state vari-
able(s) we choose only the total energy, for

• taking the position, x, and the momentum, p, as state variables for a
conservative system, one faces the problem, again, that the state is changed
even in the absence of an external cause for doing so;

• taking the position, x, and the momentum, p, as state variables for statistical
ensembles, one faces the problem of Gibb’s paradox.

Correspondingly, the state function is the Hamilton function,

Z(t) = H (t, x(t), p(t)); H (t, x(t), p(t)) = H0(x(t), p(t)) + Hext(t, x(t), p(t))
(14)

H0(x, p) = M
2 ω2x2 + M

2 p2. The “external causes” are described through ∂Hext/∂t

rather than Hext, for if Hext is time-independent, it should be absorbed into H0; cf.
Eq. (15) below.

Now, we will reformulate the principles CB1 · · · CB5 and show their validity
through their compatibility with the Hamiltonian mechanics. Thus, up to order dt ,

(CS1) the changes of state quantities (dH ) depend only on the external causes
(∂Hext/∂t), but not on the changes of nonstate quantities (dx, dp); in
particular, dH = 0, if ∂Hext/∂t = 0;

(CS2) the changes of the state quantities (dH ) are independent of the state quan-
tities (H ) themselves;

(CS3) the changes of nonstate quantities (dx, dp) depend directly only on the state
quantities (H ); external causes (∂Hext/∂t) affect the nonstate quantities (x,
p) only indirectly (via the state quantities, H );
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(CS4) the changes of the state (dH ) and of the nonstate quantities (dx, dp) are
independent of each other;

(CS5) as soon as the external causes (∂Hext/∂t) vanish, the system remains in the
state it has assumed in this moment: H (t) = H (t1) = const for t ≥ t1, if
∂Hext/∂t = 0 for t ≥ t1.

These principles imply the following equation-of-state-change.

dZ = dH = ∂H

∂p
dp + ∂H

∂x
dx + ∂H

∂t
dt !=∂Hext

∂t
dt (15)

Hence, ∂H
∂p

dp + ∂H
∂x

dx = 0 and, accounting for dp

dt
= − ∂V

∂x
in case of H =

T (p) + V (x, t), we have

dx

dt
= ∂H

∂p
;

dp

dt
= −∂H

∂x
(16)

These are Hamilton’s equations of motion.
Therefore, when reformulated in terms of appropriate state and nonstate vari-

ables, Euler’s principles of state conservation and state change apply to conserva-
tive systems as well. Below, we will extend this capability to quantum systems.

3.4.3. Internal and External Parameters

In the standard solution of Newton’s equation of motion for the harmonic
oscillator,

x(t) = x0 cos(ωt) + p0

Mω
sin(ωt); p(t) = p0 cos(ωt) − Mωx0 sin(ωt) (17)

the internal (M , ω) and external (x0, p0) parameters are interwoven. It should be
enlightening to separate them.

This separation becomes straightforward, when we rewrite the solution in
the form which would have been obtained from a solution of the Hamiltonian
equations of motion as a system of equations (of first order in time).(

x(t)

p(t)

)
=

(
cos(ωt) 1

Mω
sin(ωt)

−Mω sin(ωt) cos(ωt)

) (
x0

p0

)
=

def D̂ω(t)

(
x0

p0

)
(18)

The matrix D̂ω(t) contains only internal parameters and the time, t . It describes
rotations in phase space and exhibits the group property D̂ω(t) = D̂ω(t − t ′) ·
D̂ω(t ′), 0 ≤ t ′ ≤ t , which represents a point-mechanical analogue to Huygens’
principle of wave propagation (cf. Enders, 1996).

We obtain an uncoupled system of equations, if we go over to the variables

x̃(t) = 1√
2

[
x(t) + i

Mω
p(t)

]
; p̃(t) = 1√

2
[p(t) + iMωx(t)] (19)
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Their time-dependence is given through the eigenvalues of D̂ω(t).

x̃(t) = x̃(0)eiωt ; p̃(t) = p̃(0)e−iωt (20)

Obviously, the functions exp (±iωt) represent the combined time-reversal sym-
metry of space and momentum variables.

Moreover, one obtains immediately two independent first integrals of motion,
viz.,

I1 = e−iωt x̃(t) = x̃(0); I2 = eiωt p̃(t) = p̃(0) (21)

In fact, the energy equals E = −iωI1I2, and, accordingly, the variables (19)
factorize the Hamiltonian as

H (x, p) = H̃ (x̃, p̃) = −iωx̃(t)p̃(t) = −iωx̃(0)p̃(0) (22)

We will meet similar relationships within wave mechanics, again.
It is also noteworthy, that through the variables x̃(t) and p̃(t), the imagi-

nary unit, i = √−1, appears not only as a mean to simplify calculations, but is
indispensable for expressing physically relevant relationships.

4. QUANTIZATION AS SELECTION PROBLEM

Many derivations of QM from CM start from an equation of motion (which
do not contain stationary-state variables) and, subsequently, face the problem of
explaining the particularities of the stationary quantum states. As a consequence,
various assumptions have to be made, which do not evolve out ouf CM itself. In
this section, we will show, that such assumptions are not necessary, when one starts
from the state description sketched in the aforementioned section and concentrates
one the common rather than on the variant features of classical and quantum states.
If one accepts, that energy conservation holds true for all isolated systems, then,
the question arises, what is the energetic difference between classical and quantum
systems and which are the selection criteria for a system to belong to this or to
that group? It turns out, that quantization as selection problem addresses both the
derivation and the solution of the stationary Schrödinger equation.

In order to replace the Bohr—Sommerfeld quantization conditions with a
general quantization rule, Schrödinger has assumed, that

(A) a quantum-mechanical system be described by a wave function;
(B) this wave function obeys d’Alembert’s wave equation with a nonclassical

phase velocity depending on energy, E, and potential energy function, V (x);
(C) Planck’s relation between energy and frequency applies, i.e., ν = E/h.

These assumptions are independent of each other and sufficient, but not
necessary. For this, we will not use them, but instead the assumptions, that
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(D1) Newton’s axiomatics has to be replaced with Euler’s axiomatics, in order
to develop alternative equations of state change and alternative equations of
motion;

(D2) energy conservation holds true not only for classical, but also for nonclassical
conservative systems;

(D3) modifications of CM towards QM should not use concepts relying on the
notion of path.

We will proceed according to the key prereqisite listed in the introduction.
Since we will exploit a time-independent formulation of the energy conservation
law, we will arrive at the stationary Schrödinger equation.

4.1. The Relationship Between CM and Non-CM as Selection Problem

Helmholtz’s choice of the minus sign in Eq. (5) was motivated through the
relation of the function V (x) to the work, A. Therefore, it should be interesting to
explore the different physics, which evolves out off the setting E − T (p) = −V (x)
with −∇V (x) = F(x) as before [switching to Euler’s and Jacobi’s use of Ṽ (x) =
−V (x) with +∇Ṽ (x) = F(x) involves only different signs and does not yet lead
to different physics].

In fact, in place of Eq. (1), one can require

M ẍ(t) = −F(x(t)) (23)

without coming into conflict with Newton’s 1st and 3rd laws. Proceeding as after
Eq. (1), one obtains T (p) = +V (x) + const in place of T (p) = −V (x) + const
above. The result is a classical, but non-Newtonian mechanics, which is free of
internal logical contradictions, though not realized in our world.

In what follows, we will represent these alternatives as logical relationships
(cf. Enders and Suisky, in press). A unification of both alternatives will lead us to
QM.

(1) Helmholtzian condition of defining classical entities
The difference E − T (p) is semi-definite. In this case, the exclusion

either E − T (p) ≥ 0 or E − T (p) ≤ 0 (24)

holds true for all possible momentum configurations p in state E, i.e.,

either p|E−T (p)≥0 ∈ P poss or p|E−T (p)≤0 ∈ P poss (25)

In the domain E − T (p)≥
≤0, we set E − T (p) = ±V (x). Parametrizing

x = x(t), p = p(t) = M ẋ(t) and differentiating w.r.t. time, t , we obtain ṗ(t) =
∓∇V (x(t)) = ±F(x(t)) corresponding to Eqs.(1) and (23), respectively. This
means, that in the domain {p|E − T (p) ≥ 0}, Newton’s 2nd law applies, while
in the domain, {p|E − T (p) ≤ 0}, we deal with a classical, but non-Newtonian
mechanics.
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(2) Helmholtzian condition of defining non-classical entities
The difference E − T (p) is indefinite. Consequently, both inequations,

E − T (p) ≥ 0 and E − T (p) ≤ 0 (26)

are admitted for the momentum configurations p in state E, i.e.,

p|E−T (p)≥0 ∈ P poss and p|E−T (p)≤0 ∈ P poss (27)

The latter means P poss = P all.

According to our analysis of condition 1, P all comprises domains with dif-
ferent, incompatible to each other equations of motion along paths [x(t), p(t)].
Consequently, systems with P poss = P all do not move along paths.

(3) The nonmechanical case

neither E − T (p) ≥ 0 nor E − T (p) < 0 (28)

for any momentum configuration p in state E. Here, no mechanics is
possible, because P poss = ∅.

Analogous or complementary statements can be made for the difference
E − V (x).

(1) Complementary Helmholtzian condition of defining classical entities
The difference E − V (x) is semi-definite. In this case, the exclusion

either E − V (x) ≥ 0 or E − V (x) ≤ 0 (29)

holds true for all possible configurations x in state E, i.e.,

either x|E−V (x)≥0 ∈ Cposs or x|E−V (x)≤0 ∈ Cposs (30)

In the domain E − V (x)≥
≤0, we set E − V (x) = ±T (p). Parametriz-

ing x = x(t), p = p(t) = M ẋ(t) and differentiating w.r.t. time, t , we obtain
ṗ(t) = ∓∇V (x(t)) = ±F(x(t)) like in Case 1. This means, that in the do-
main {x|E − V (x) ≥ 0}, Newton’s 2nd law applies, while in the domain,
{x|E − V (x) ≤ 0}, we deal with a classical, but non-Newtonian mechanics.

(2) Complementary Helmholtzian condition of defining non-classical entities
The difference E − V (x) is indefinite. Consequently, both inequations,

E − V (x) ≥ 0 and E − V (x) ≤ 0 (31)

are admitted for the configurations x in state E, i.e.,

x|E−V (x)≥0 ∈ Cposs and x|E−V (x)≤0 ∈ Cposs (32)

The latter means Cposs = Call.
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According to our analysis of condition 1, Call comprises domains with dif-
ferent, incompatible to each other equations of motion along paths [x(t), p(t)].
Consequently, systems with Cposs = Call do not move along paths.

(3) The complementary nonmechanical case

neither E − V (x) ≥ 0 nor E − V (x) ≤ 0 (33)

for any configuration x in state E. Here, no mechanics is possible, because
Cposs = ∅.

As a result, alternative definitions of the set of possible (momentum) config-
urations can be made, without coming into conflict with the classical axiomatics.

The six cases listed above correspond to the following hierarchy of selection
problems.

1. A classical-mechanical system obeys either the laws of Newtonian
CM, where V (x(t)) + T (p(t)) = const, ṗ = −∇V (x) = +F(x), or the
laws of non-Newtonian CM, where V (x(t)) − T (p(t)) = const, ṗ(t) =
+∇V (x) = −F(x) (Cases 1/1’);

2. A mechanical system obeys either the laws of CM (motion along paths;
Cases 1/1’), or the laws of non-CM (motion not along paths; Cases 2/2’);
the logical opposition between the xor within CM and the and within
non-CM has been discussed by Schrödinger (Schrödinger, 1933), it is a
generalization of Bohr’s and Heisenberg’s complementarity between CM
and QM to that between CM and non-CM;

3. A system is either a mechanical (Cases 1/1’, 2/2’) or a nonmechanical
one (Cases 3/3’).

Thus, the logical relationship (xor) between Newtonian CM and non-
Newtonian CM is the same as that between Euler’s axioms E1 and E2, as expressed
in axiom E0. From this, we conclude, that these alternatives exclude each other
and, at once, are “in harmony with each other,” too. This harmony expresses itself
in the fact, that the qualitative principles of state conservation and state change
are the same (Euler’s axioms, Newton’s 1st and 3rd Laws), while the represen-
tations of the total energy and the equations of motion are different, though not
without interrelations. These interrelations are provided through the use of the
same dynamical variables [x(t) and p(t)] and the same functions of them (force,
energies).

Similarly, the alternatives CM and non-CM exclude each other and, at once,
are “in harmony with each other.” The harmony is guaranteed through the energy
law, while the representations of the total energy and the equations of motion
should be different. We expect the occurrence of new entities, since, (i), new
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dynamical variables are needed and, (ii), the possible alternatives of relationships
between the energies are exhausted within CM. This will be explored next.

4.2. Derivation of the Stationary Schrödinger Equation
as Selection Problem

4.2.1. Preliminaries

We have identified two closely related points, where a natural and axiomatic
modification of CM towards QM (cf. Cases 2/2’ above) is indicated.

Point of modification (1). Lifting the division of the set of (momentum) configu-
rations into possible and impossible ones: Cposs = Call (Case 2’), P poss = P all

(Case 2).
Point of modification (2). Representing the extension and the total energy as

internal parameters for all values of E, not only for E = Vmin (state at rest).

According to our considerations above, there are two fundamental differences
between classical and nonclassical mechanical systems. Comparing the differences
between the nonclassical Cases 2/2’ and the classical Cases 1/1’, we note

Fundamental difference 1. The notion of path as a point -wise relationship between
the coordinates in space and that in momentum space looses its meaning, for

• there is no longer a unique algebraic relation like V (x) + T (p) = const
between them;

• there is no longer a common parametrization like x = x(t), p = p(t) =
Mẋ(t).

Furthermore, we observe

Fundamental difference 2. There are no longer coordinates xmin / max (pmin / max)
describing the boundaries of a system in (momentum) space, because the ex-
pressions E − V (x) and E − T (p) are no longer (semi-)definite [remember,
that in Eqs. (7) and (8 ), the finite energy value limits the extension, and both
the energy and the extensions in space and in momentum space are external
parameters].

Both fundamental differences are interrelated as both imply, that

1. all (momentum) configurations should be considered together, and all
configurations are related to all momentum configurations, and vice versa
[for a system moving along a path, the path provides a point-wise rela-
tionship between the configurations and the momentum configurations,
and the initial (momentum) configurations are distinguished from the
other ones and can serve as single representatives for calculating the total
energy of a classical system as Ecl = V (x0) + T (p0)];



178 Enders and Suisky

2. novel entities are necessary for describing the extension of systems; pre-
sumably, these entities are functions of x and p, respectively, where the co-
ordinates of their extremalous values play the role of xmin / max (pmin / max).

This means, that we need another, a nonclassical representation of the total
energy.

4.2.2. Energy of (Momentum) Configuration in the Nonclassical Case

Obviously, for a system for which all (momentum) configurations are pos-
sible, the function V (x) [T (p)] is no longer the contribution of the (momentum)
configuration x (p) to the total energy, because V (x) [T (p)] is unbounded in the
domain Cposs = Call [P poss = P all]. On the other hand, the energy is expected to be
still composed of contributions of both x- and p-dependent terms (otherwise, the
number of degrees of freedom would be lowered). These contributions be described
through functions Vncl[C] = Vncl(x) and Tncl[P ] = Tncl(p) to be specified now.

First, the functions Vncl(x) and Tncl(p) should interrelate energy and extension
for a nonclassical system, although for a system the boundaries of which lie in the
infinite, one can speak at most about an effective extension. This effective extension
(we call it xmax and pmax, respectively, again) should be connected with the maxima
of the function Vncl(x) [Tncl(p)] as V max

ncl = Vncl(xmax) [T max
ncl = Tncl(pmax)]. As

in the classical case, any ordered set xmax,1 < xmax,2 < · · · with Vncl(xmax,1) <

Vncl(xmax,2) < · · · or pmax,1 < pmax,2 < · · · with Tncl(pmax,1) < Tncl(pmax,2) < · · ·
should belong to the ordered set of states E1 < E2 < · · ·. From this follows, (i),
that the function Vncl(x) [Tncl(p)] is bounded in the domain Cposs [P poss], and,
(ii), that the values xmax [pmax] and, hence, the function Vncl(x) [Tncl(p)] depend
(parametrically) on E. For this, we will write the nonclassical functions as VEncl (x)
and TEncl (p).

The “harmony” between the classical and nonclassical functions is guaran-
teed, if the latter “contains” the former. For meeting the other requirements just
listed, we introduce two dimensionless limiting multiplicative factors, FEncl (x) and
GEncl (p), such that

VEncl (x) = FEncl (x) · V (x) ≤ Encl; x ∈ Call (34a)

TEncl (p) = GEncl (p) · T (p) ≤ Encl; p ∈ P all (34b)

This is the simplest possible modification of the classical expressions. The re-
quirement Vncl(x), Tncl(p) ≤ Encl results from the fact, that without paths, there is
no compensation mechanism between x- and p-dependent terms.

The limiting factors FEncl (x) and GEncl (p) will be determined next.
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4.2.3. The Nonclassical Representation of the Total Energy

Further, all (momentum) configurations enter the non-CM representation of
the total energy and contribute to it, hence, the nonclassical representation of the
total energy becomes

Encl =
∫
Call VEncl (x) dx∫
Call FEncl (x) dx

+
∫
P all TEncl (p) dp∫
P all GEncl (p) dp

=
∫
Call FEncl (x) · V (x) dx∫

Call FEncl (x) dx
+

∫
P all GEncl (p) · T (p) dp∫

P all GEncl (p) dp
(35)

The denominators have been added for dimensional reasons. It is an implicit,
therefore, defining equation for Encl [as well as for FEncl (x) and GEncl (p)] con-
taining no external parameters (remember, that within Bohr’s theory, energy and
extension of the stationary states are defined as internal parameters, too). The
new functions FEncl (x) and GEncl (p) occur as weights for the contributions of the
(momentum) configurations to the value of Encl (cf. Schrödinger, 1927, Vierte
Mitteilung, §7).

The classical Eq. (6) is obtained formally from this represen-
tation, when setting FEncl (x) → Fcl(x, x(t)) = �xδ(x − x(t)), GEncl (p) →
Gcl(p, p(t)) = �pδ(p − p(t)) (�x , �p normalization factors). This setting de-
scribes no limiting procedure, however. In particular, the functions Fcl and Gcl are
not smooth and, thus, do not determine extensions.

In order to retain the “harmony” with CM mentioned above, in particular, the
relation between energy and extension through ordered sets, the factors FEncl (x)
and GEncl (p) should not change the signs of VEncl (x) and TEncl (p) against that
of V (x) and T (p), i.e., they should be nonnegative. In order to free the subse-
quent calculations from this condition (‘the less requirements, the better’), we set
FEncl (x) = ∣∣fEncl (x)

∣∣2
and GEncl (p) = ∣∣gEncl (p)

∣∣2
(we will see later, that we have

to deal with complex-valued functions). Inserting this into Eq. (35), we obtain the
equivalent representation of the energy

Encl =
∫ |fEncl (x)|2V (x) dx∫ |fEncl (x)|2dx

+
∫ |gEncl (p)|2T (p) dp∫ |gEncl (p)|2dp (36)

The new functions fEncl (x) and gEncl (p) occur as weighting amplitudes for the
contributions of the (momentum) configurations to the value of Encl.

For all integrals in Eq. (36) to be finite, the functions fEncl (x) and gEncl (p)
should obey the boundary conditions (from now on, we omit the index “ncl”)

lim
p→±∞ gE(p) = lim

x→±∞ fE(x) = 0 (37)

If lim|x|→∞ V (x) < ∞, the boundary condition for fE(x) can be weakened.
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4.2.4. The Stationary Schrödinger Equation

Now, since the functions fE(x) and gE(p) depend on the same variable
parameter E, there is a certain relationship between them. One can show the
Fourier transformation to be the only suitable relationship (Enders and Suisky,
Einführung in die Quantenfeldtheorie des Festkörpers, manuscript in preparation).

fE(x) = 1√
2π

+∞∫
−∞

e
−i

x·p
�x�p gE(p)

dp

�p

; gE(p) = 1√
2π

+∞∫
−∞

e
i

p·x
�x�p fE(x)

dx

�x

(38)
(�x , �p–normalization factors, again).

This enables us to eliminate the function gE(p) from Eq. (36) and to write
(α ≡ �x�p)

E =
∫

f̄E(x)Ĥ (x)fE(x) dx∫ |fE(x)|2 dx
; Ĥ (x) ≡ H

(
x, p → −iα

∂

∂x

)
(39)

or

+∞∫
−∞

f̄E(x)

[
V (x)fE(x) − α2

2M

∂2

∂x2
fE(x) − EfE(x)

]
dx = 0 (40)

A sufficient condition for this equation to hold true is the vanishing of the
expression within the square brackets (in case of f̄E(x) being linearly independent
of fE(x), this condition is even necessary).

V (x)fE(x) − α2

2M

∂2

∂x2
fE(x) − EfE(x) = 0 (41)

To take this equation as a condition for the validity of the nonclassical representa-
tions of the energy law given above is supported by the well-known fact, that this
equation holds true for the minimum value of the r.h.s. of Eq. (39), i.e., for the
ground state.

In turn, when Eq. (41) holds true, we have

lim
R→+∞

+R∫
−R

f̄E(x)Ĥ (x)fE(x) dx

+R∫
−R

|fE(x)|2 dx

= E (42)

independent of the boundary conditions for fE(x). The only remaining conditions
are two-fold differentiability and existence of a Fourier transform gE(p). Indeed,
the state equation should hold true independent of boundary conditions when
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claiming applicability to all systems and states, respectively, both bounded and
unbounded.

Identifying α = h and fE(x) = √
�xψE(x), Eq. (41) becomes the stationary

Schrödinger equation. This identification is justified by comparing its solution for
the harmonic oscillator with Planck’s oscillator (Enders and Suisky, Einführung in
die Quantenfeldtheorie des Festkörpers, manuscript in preparation). The momen-
tum representation of the stationary Schrödinger equation is obtained analogously.
Note, that this derivation also justifies the use of the classical expressions V (x)
and T (p), among this the identification of Planck’s frequency with the classical
oscillator frequency, ωcl = √

κ/M .

4.3. Solution of the Stationary Schrödinger Equation as Selection Problem

On principle, accounting for the boundary conditions (37), Eq. (41) can
be solved as a classical eigenvalue problem (Schrödinger, 1927). However, this
would discard the nonclassical content of the wave function. For this, we look
for a solution method, which disclosures the discreteness without using boundary
conditions like (37). As in the CM selection problems, there is a mathematical
part to be solved first and a physical part yielding the final solution.

4.3.1. The Mathematically Distinguished Solutions

Introducing dimensionless variables, one obtains for the linear harmonic
oscillator Weber’s equation being one of the equations of the parabolic cylinder
(Abramowitz and Stegun, 1964; Whittaker and Watson, 1927).

d2uν(ξ )

dξ 2
+

(
ν + 1

2
− 1

4
ξ 2

)
uν(ξ ) = 0; ν ≡ E

hω
− 1

2
(43)

Here, the “energy parameter” is primarily a mathematical parameter of the dif-
ferential equation considered, it becomes a physical parameter only after passing
suitable criteria (cf. Schrödinger, 1927).

Now, for and only for the values ν = −1 and ν = 0 the l.h.s. of Eq. (43)
factorizes. (

d

dξ
+ 1

2
ξ

)(
− d

dξ
+ 1

2
ξ

)
u−1(ξ ) = 0;

(44)(
− d

dξ
+ 1

2
ξ

)(
d

dξ
+ 1

2
ξ

)
u0(ξ ) = 0

Note, that these factors are closely related to the classical variables (19)]. There-
fore, the values ν = −1 and ν = 0 are mathematically distinguished from all
other ν-values. The corresponding solutions, u−1(ξ ) and u0(ξ ), are mathematically
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equivalent, but physically different. u0(ξ ) = u0(0) exp
(− 1

4ξ 2
)

is a limiting func-
tion, while u−1(ξ ) = u−1(0) exp

(+ 1
4ξ 2

)
is not. This distinguishes physically the

value ν = 0 over the value ν = −1.
If there would be no other distinguished ν-values, there would be only one

state (ν = 0). However, a system having got just one state could not exchange
energy with its environment. Hence, there should be further distinguished ν-
values. In order to find them, we examine the recurrence relations for the even
and odd solutions to Eq. (43) (cf. Abramowitz and Stegun 1964, §19.6),(

d

dξ
+ ξ

2

)
ue

ν(ξ ) = −νuo
ν−1(ξ );

(
− d

dξ
+ ξ

2

)
uo

ν−1(ξ ) = −ue
ν(ξ ) (45)

and(
− d

dξ
+ ξ

2

)
ue

ν(ξ ) = (ν + 1) uo
ν+1(ξ );

(
d

dξ
+ ξ

2

)
uo

ν+1(ξ ) = ue
ν(ξ ) (46)

These recurrence relations base on Whittaker’s representation of the solutions
as contour integrals (Whittaker and Watson, 1927)—a method being developed
well before QM, i.e., independently of the needs of QM and, thus, for the whole
interval -∞ < ν < +∞. They

• do not follow from the usual solution methods;
• interrelate solution functions with finite difference between their ν-value,

viz., �ν = ±1 (�E = ±hω);
• divide the continuum of ν-values into over-countably infinitely many sets

of countably infinitely many ν-values each:
Set (a): {. . . ,−3,−2,−1} [the relations (46) breaks at ν = −1 (being one
of the two distinguished values found above)];
Set (b): {0,+1,+2, . . .} [the relations (45) breaks at ν = 0 (being the other
distinguished value found above)];
Sets (c): {. . . ,−2 + νr ,−1 + νr , νr , νr + 1, νr + 2, . . . | − 1 < νr < 0}
[νr - reference value; no break].

• reflect the genuine discrete structure saught for (they have nothing to do
with boundary conditions, since all solutions exhibit this structure, not
only Schrödinger’s eigensolutions).

The smallest interval representing all solutions is the closed interval νr =
[−1, 0]. Here, again, the values νr = −1 (cf. set a) and νr = 0 (cf. set b) are
mathematically distinguished, this time, as being the boundary points of this
interval. All inner interval points, −1 < νr < 0 (cf. sets c), are mathematically
equivalent among each other and, consequently, not distinguished mathematically.

Hence, the sets (a) and (b) are mathematically distinguished, when compared
with sets (c).
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4.3.2. The Physically Distinguished Solutions

The two mathematically distinguished sets (a), ν = −1,−2, . . ., and (b),
ν = 0,+1,+2, . . ., are mathematically equivalent. Physically, however, they are
different. All functions of set (b) are limiting functions, while all functions of set
(a) are not [those of set (c) are also not]. An even stronger selection criterion is
provided by the energy law.

As a matter of fact, the transition of the oscillator from state Eν = (
ν + 1

2

)
hω

to state Eν−1 = (
ν − 1

2

)
hω is connected with the delivery of the energy hω to the

environment, e.g., to a radiation field. Hence, an oscillator with the possible energy
values E−1 = − 1

2 hω, E−2 = − 3
2 hω, · · · [set (a)] could deliver an infinite amount

of energy to the environment, in contradiction to the energy law (Helmholtz,
1847). In other words, these transitions must stop at some minimum amount
of energy content of the oscillator. Such a minimum [“permanent/ground state”
(Bohr, 1913), “normal state” (Heisenberg, 1925)] is contained soleily in set (b);
E0 = 1

2 hω, E1 = 3
2 hω, · · ·. Hence, set (b) is physically distinguished from set (a)

through its compatibility with the energy law.
This means, that the physical solutions are that with ν = n = 0, 1, 2, . . . .

This agrees with Schrödinger’s result, of course, but it has been obtained through
analyzing the stationary Schrödinger equation alone, without resorting to boundary
conditions (and without computing the actual solution functions).

The corresponding functions un(ξ ) can be calculated most simply from
Eq. (45). One obtains the well-known result un(ξ ) = exp

{− 1
4ξ 2

}
Hen(ξ ) (Hen—

nth Hermite polynomial), where Schrödinger’s boundary conditions, un(ξ ) → 0
for ξ → ±∞, are fulfilled automatically.

The values, xmax,n, where the functions ψ2
n (x)V (x) assume their maximum,

increase with n: xmax,1 < xmax,2 < · · ·. This means, that the ordering relation be-
tween energy and effective extension in space and in momentum space is realized
as described in the generalized Helmholtz’s rule; the minimum extension is as-
sumed in the ground state.

Finally, using the recurrence formula Hen+1(x) = x · Hen(x) − n ·
Hen−1(x) and the inequality |Hen(x)| < ex2/4

√
n!k (k ≈ 1.086435) (cf.

Abramowitz and Stegun, 1964, 22.14.17), one can prove, that Vncl(x), Tncl(p) ≤
Encl, as required above. Actually, u2

n(ξ ) · 1
4ξ 2 < n + 1

2 (−∞ < ξ < +∞, n =
0, 1, . . .). The occurrence of the “smaller than” sign means, that—in contrast to
the classical oscillator—the energy cannot be represented by one single (momen-
tum) configuration; therefore, the quantum oscillators does not exhibit a state at
rest.

Note, that these results follow alone from the most general principles of
state description according to Leibniz, Euler, Helmholtz and Schrödinger, without
solving any state equation or equation of motion and without assuming particular
boundary conditions.
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5. THE TIME-DEPENDENT CASE

While Schrödinger (1927) and Heisenberg (1925) started from a time-
dependent equation, we have worked so far with the set of all possible (momentum)
configurations of systems in their stationary states, where time plays no role. In
order to incorporate the time, we will proceed as in the classical case and consider
first the stationary states, then, the change of change and, finally, arrive at the
time-dependent Schrödinger equation as the equation of motion.

5.1. Time-Dependence of the Stationary States

The only place for implementing a time-dependence into the stationary quan-
tum state dealt with so far is the wave function, for which we thus write fE(x, t)
and gE(p, t), respectively.

The invariance of the energy (36) implies, that the time-dependence of the
wave functions is of separative multiplicative form

fE(x, t) = fE(x) · θE(t); gE(p, t) = gE(p) · θE(t); |θE(t)| = 1 (47)

The factor θE(t) is the same for both functions, fE(x, t) and gE(p, t),
since these are for the same reasons interrelated through the Fourier trans-
formation, for which the functions fE(x) and gE(p) are. |θE(t)| = 1, because
|θE(t)| �= const would imply, that the (still stationary) functions FE(x, t) and
GE(p, t) are time-dependent. Moreover, a real-valued function θE(t) would
depend on the normalization, fE(x, t) → fE(x, t)/ ‖fE(x, t)‖1/2 [the r.h.s. of
Eq. (36) is invariant against fE(x, t) → ‖fE(x, t)‖number · fE(x, t)]. In other
words, the form θE(t) = exp {iχE(t/tE)} is necessary for the existence of sta-
tionary states. Here, χE is the phase to be determined next. Since it is di-
mensionless, there is a reference time, tE , which we expect to depend on
energy, E.

Since this time dependence is not related to a new quantization problem,
there is no reason for a new quantum constant, say, h′, so that the reference time
should equal tE = const · h/E. And because θE(t) describes the time-dependence
for both the spatial and the momentum functions, it should obey the com-
bined time-reversal symmetry found in Eq. (20), i.e., θE(−t) = θE(t)∗. Hence,
χE(−t/tE) = −χE(t/tE). For free particles, we have gE(p, t) ∼ δ(p − hk)e−iωt

and fE(x, t) ∼ ei(kx−ωt), where the group velocity equals the time-independent
particle velocity, vg = dω/dk = hk/m (m—mass). This implies χE(t/tE) =
Et/h, θE(t) = exp {−iEt/h)} and, finally,

fE(x, t) = fE(x)e−i Et

h ; gE(p, t) = gE(p)e−i Et

h (48)

As a consequence, the (still stationary) functions fE(x, t) and gE(p, t)
obey the time-dependent Schrödinger equation in location and momentum
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representation, respectively; we thus identify fE(x, t) = √
�xψE(x, t) and

gE(p, t) = √
�pφE(p, t).

For later use, we write down the operator form of this time dependence as

ψE(x, t) = Û0(x; t)ψE(x, 0), where Û0(x; t) = e−iĤ0(x)t/ h (49)

is the (unitary) time-development operator, and Ĥ0ψE(x, t) = EψE(x, t).
However, at this stage, these are only kinematic, not dynamic relations; hence,

it is not justified to simply carry over them to the nonstationary case.

5.2. The Equation-of-State-Change

Thus, in order to derive rather than to postulate dynamic laws, we exploit
Euler’s principles of state change (the principle of least action is not appropriate
here, because, within QM, the minimum action is governed by the value of h).

Since the Hamilton function is a suitable classical state function, it is certainly
reasonable to exploit the nonclassical representation (36) as nonclassical state
function. The ‘external causes’ be given through ∂Vext(x, t)/∂t [as in the classical
case, if Vext is time-independent, it should be absorbed into V (x)]. Then, the
nonclassical state function reads

Zncl(t) = 〈ψ(x, t)|V (x) + Vext(x, t)|ψ(x, t)〉
〈ψ(x, t)|ψ(x, t)〉 + 〈φ(p, t)|T (p)|φ(p, t)〉

〈φ(p, t)|φ(p, t)〉

= 〈ψ(x, t)|Ĥ (x, t)|ψ(x, t)〉
〈ψ(x, t)|ψ(x, t)〉 ; Ĥ (t, x) = Ĥ0(x) + Vext(t, x) (50)

Here, ψ(x, t) is the general time-dependent wave function; the energy, E, is
no longer a characteristic parameter of the system and thus not indicated. For
continuity reasons (see principle QS5 below), it is the Fourier transform of the
function φ(p, t). In the stationary case, we have ψ(x, t) = ψE(x, t), Zncl(t) =
E = const and dZ = 0.

Now, we reformulate the Eulerian principles of state change for classical
systems, CS1· · ·CS5, in terms of the non-classical state (Z—we will omit the
index ncl) and nonstate functions (ψ , ψ̄). This means, that, up to order dt ,

(QS1) the changes of state quantities (dZ) depend only on external (∂Vext/∂t),
but not on internal causes (Ĥ0); in particular, dZ = 0, if ∂Vext/∂t = 0;

(QS2) the changes of the state quantities (dZ) are independent of the state quan-
tities (Z) themselves;

(QS3) the changes of nonstate quantities (dψ , dψ̄) depend directly only on state
quantities (Z); the external causes (∂Vext/∂t) affect nonstate quantities (ψ ,
ψ̄) only indirectly (via the changes of state quantities, dZ);

(QS4) the changes of the state quantities (dZ) and of the nonstate quantities (dψ ,
dψ̄) are indepent of each other;
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(QS5) as soon as the external causes (∂Vext/∂t) vanish, the system remains in
the state it has assumed in this moment; in case of that being an eigen-
state, say, E1, this means Z(t) = const = Z(t1) = E1 and, as a conse-
quence, ψ(x, t) = ψE1 (x, t) = ψE1 (x, t1) exp

{− i
h
E1 (t − t1)

}
for t ≥ t1,

if ∂Vext(x, t)/∂t = 0 for t ≥ t1.

Then, the equation-of-state-change becomes

dZ = 〈dψ |Ĥ |ψ〉 + 〈ψ |dĤ |ψ〉 + 〈ψ |Ĥ |dψ〉
〈ψ |ψ〉 − 〈dψ |ψ〉 + 〈ψ |dψ〉

〈ψ |ψ〉2
〈ψ |Ĥ |ψ〉

!= 〈ψ |dĤ |ψ〉
〈ψ |ψ〉 = 〈ψ | ∂

∂t
Ĥ |ψ〉

〈ψ |ψ〉 dt (51)

5.3. The Equation of Motion

The equation-of-state-changesatisfies the principles QS1· · ·QS5, i.e., dZ =
〈ψ |ψ〉−1 〈ψ | ∂

∂t
Ĥ |ψ〉dt , if

〈dψ |Ĥ |ψ〉 + 〈ψ |Ĥ |dψ〉 = 0 and 〈dψ |ψ〉 + 〈ψ |dψ〉 = 0 (52)

In order to satisfy these equations, we set, accounting for Eq. (49) and QS5,

ψ(x, t) = Û (x; t)ψ(x, 0); Û (x; 0) = 1;
(53)

dψ(x, t) = dÛ (x; t)ψ(x, 0) = ∂

∂t
Û (x; t)ψ(x, 0) dt

As in the stationary case, the homogeneity in ψ corresponds to the fact, that only
the relative values of ψ(x, t) exhibit a physical meaning, see Eq. (50).

Inserting these expressions into Eqs.(52) yields

〈dÛ (t)ψ(x, 0)|Ĥ |Û (t)ψ(x, 0)〉 + 〈Û (t)ψ(x, 0)|Ĥ |dÛ (t)ψ(x, 0)〉 = 0
(54)

and 〈dÛ (t)ψ(x, 0)|Û (t)ψ(x, 0)〉 + 〈Û (t)ψ(x, 0)|dÛ (t)ψ(x, 0)〉 = 0

Obviously, dÛ = iγf (Ĥ ) dt (γ —real-valued t-independent constant, f —entire-
rational function) is a solution to both equations. Compatibility with the stationary
case (49) implies γ = −1/h and f (Ĥ ) = Ĥ . Hence,

dÛ (x; t) = −i

h
Ĥ (x; t) dt ; Û (x; t) = P


exp




−i

h

t∫
0

Ĥ (x, t ′)dt ′





 (55)

where P denotes Dyson’s time-ordering operator (Dyson, 1949). Using this so-
lution, formula (53) yields immediately the time-dependent Schrödinger equation
for ψ(x, t). Analogously, its momentum representation can be derived.
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Both representations of the time-dependent Schrödinger form the equation
of motion. As in the classical case, the equation of motion is a dynamic equation
for nonstate entities.

5.4. The Invariant Expression in the Nonstationary Case

Alternatively, one can derive the nonstationary Schrödinger equation from
an invariant expression, that replace the nonclassical representation of the energy
(but reduces to that representation in the stationary case).

Like above, the ‘external causes’ be described by means of time-dependent
functions Vext(x, t) and, moreover, Text(p, t). Looking, again, for an invariant
functional of the limiting functions, we make the ansatz∫

f̄ (x, t)V (x, t)f (x, t) dx∫
f̄ (x, t) ∂

∂t
f (x, t) dx

+
∫

ḡ(p, t)T (p, t)g(p, t) dx∫
ḡ(p, t) ∂

∂t
g(p, t) dx

= β != const (56)

The time-derivative is necessary for avoiding an instantaneous reaction of the
system. It is of 1st order, because the stationary case yields only the initial val-
ues f (x, 0) and g(p, 0). The compatibility with the stationary case (48) yields
β = ih. Proceeding as in the stationary case, we obtain the pair of the loca-
tion and of the momentum representations of the time-dependent Schrödinger
equation.

We remark, that the identification β = ih can also be derived from the time-
dependent equation invoking special-relativistic arguments (here, the speed of
light provides the relationship between spatial and temporal variables).

6. SYSTEMS OF TWO EQUAL SUBSYSTEMS

We will sketch, how the Euler–Helmholtzian manner of (stationary) state
description adopted in this paper, in particular, the nonclassical representation of
energy (36) can be exploited for the description of quantum many-body systems.
No additional assumptions will be made, but the rather natural one, that—as in
single-particle systems—the symmetries of the classical system exist also in the
corresponding nonclassical system.

When expressed in generalized coordinates and momenta, the potential and
kinetic energy functions of a conservative system with two equal classical bodies
exhibit the symmetry V (q2, q1) = V (q1, q2) and T (p2, p1) = T (p1, p2), respec-
tively, and the total energy—as well as the other integrals of motion—of this
system is invariant against an exchange of (the labels of) the two bodies (thus,
the Lagrangean formalism is a prerequisite of many-body quantum mechanics).
It is natural to assume, that this permutation symmetry of the stationary and
nonstationary states applies to the corresponding nonclassical system as well.
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As a consequence, we have for the energy of the nonclassical two-body
system (returning to the variable x) the representation

E =
∫

FE(x1, x2)V (x1, x2) dx1dx2∫
FE(x1, x2) dx1dx2

+
∫

GE(p1, p2)T (p1, p2) dp1dp2∫
GE(p1, p2) dp1dp2

=
∫

F+
E (x1, x2)V (x1, x2) dx1dx2∫

F+
E (x1, x2) dx1dx2

+
∫

G+
E(p1, p2)T (p1, p2) dp1dp2∫

G+
E(p1, p2) dp1dp2

(57)

Here, F+
E (x1, x2) = 1

2 [FE(x1, x2) + FE(x2, x1)] and G+
E(p1, p2) = 1

2 [GE

(p1, p2) + GE(p1, p2)] are the symmetrical parts of the weight functions
FE(x1, x2) and GE(p1, p2). Their antisymmetrical parts, F−

E (x1, x2) =
1
2 [FE(x1, x2) − FE(x2, x1)] and G−

E(p1, p2) = 1
2 [GE(p1, p2) − GE(p1, p2)], do

not contribute to the integrals (since all integrands are continuous and bounded,
the order of integration can be interchanged).

Tentatively, one expects F−
E (x1, x2) ≡ 0 and G−

E(p1, p2) ≡ 0. In fact, let us
consider the weighted distance,

〈x1 − x2〉 =
∫

FE(x1, x2) (x1 − x2) dx1dx2∫
FE(x1, x2) dx1dx2

=
∫

F−
E (x1, x2) (x1 − x2) dx1dx2∫

F+
E (x1, x2) dx1dx2

(58)
Since both bodies/particles are equal, there is no reason for the case 〈x1 − x2〉 > 0
to be preferred over the case 〈x1 − x2〉 < 0. For this, 〈x1 − x2〉 = 0 and, conse-
quently, F−

E (x1, x2) ≡ 0.
An analogous consideration of the entity 〈p1 − p2〉 leads to the result

G−
E(p1, p2) ≡ 0.

In other words, the weight functions are symmetric. For the weight ampli-
tudes, this means

|ψE(x2, x1)|2 = |ψE(x1, x2)|2 ; |φE(p2, p1)|2 = |φE(p1, p2)|2 (59)

Since this symmetry applies to all systems under consideration, it implies, that the
weight amplitudes themselves are either symmetric,

ψE(x1, x2) = ψ+
E (x1, x2) ≡ ψ̃E(x1, x2) + ψ̃E(x2, x1);

φE(p1, p2) = φ+
E (p1, p2) ≡ φ̃E(p1, p2) + φ̃E(p2, p1) (60)

or anti-symmetric,

ψE(x1, x2) = ψ−
E (x1, x2) ≡ ψ̃E(x1, x2) − ψ̃E(x2, x1);

φE(p1, p2) = φ−
E (p1, p2) ≡ φ̃E(p1, p2) − φ̃E(p2, p1) (61)

where, the tilded functions are free of the requirement of permutation symmetry.
As a consequence, there are two classes of wave functions (cf. Pauli, 1973),

ψ+
E (x1, x2) = F[φ+

E (p1, p2)] and ψ−
E (x1, x2) = F[φ−

E (p1, p2)], respectively (F[·]
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means the 2D Fourier transformation). The properties of them are well known and
need not be discussed here.

The implications of this approach for the issue of (in)distinguishability of
classical and quantum particles will be discussed elsewhere.

7. SUMMARY AND CONCLUSIONS

We have presented a novel representation of quantization as a selection
rather than eigenvalue problem. It starts from Euler’s rather than from Newton’s
axiomatics, uses Helmholtz’s treatment of the energy conservation law, gen-
eralizes Euler’s method of maxima and minima, and realizes Einstein’s crite-
rion for the difference between the energy spectra of classical and quantum
systems.

Mechanical systems can be divided into the two classes of classical and
nonclassical systems. The internal system parameters like mass and potential
constant are the same in both classes. And in both classes, the total energy
is a state variable (“state” in the sense of Newton and Euler, i.e., stationary
state). The fundamental difference between both classes is the different repre-
sentation of the total energy in terms of internal (including universal) and ex-
ternal parameters and the manner of state change. The classical state equation,
H (p(t), x(t)) = E defines the energy, E, as explicit, continuous function of the
external, continuous parameters x0 = x(t0) and p0 = p(t0) (the initial conditions);
consequently, it is also an external, continuous parameter. In contrast, the non-
classical state equation, E =< ψE(x)|Ĥ (x)|ψE(x) > / < ψE(x)|ψE(x) >, de-
fines the energy implicitly as it contains no external parameters. As a conse-
quence, the energy of quantum systems is an internal and essentially discontinuous
parameter.

These different representations of the energy can be obtained only through
different additional assumptions on the systems described. It is often assumed, that
the difference is caused by the existence of the action parameter. We have shown,
that this assumption is not necessary. It is sufficient to make different assumptions
about the (momentum) configurations a mechanical system may assume and their
relations to the total energy.

Within CM, the physical spectrum of the mathematical “energy parame-
ter” is a continuum; for the oscillator, − 1

2 ≤ ν < ∞. The quantization procedure
proposed in this paper shows, that within QM, this continuum is excluded even
mathematically from the physical spectrum. As a consequence, the noninteger val-
ues of the energy parameter are even not available for the physical selection of the
spectrum. In other words, the physical selection does not deal with the continuum,
so that a question like “what about the physically discarded continuous energy
values?” does not arise at all. The physically discarded values ν = −1,−2, . . .

are not part of the classical spectrum (ν ≥ − 1
2 ).
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Because of the methodological advantages of this approach, three important
methodical problems stressed by Schrödinger are solved.

1. The “quantum equation” should “carry the quantum conditions in itself”
(cf. Schrödinger, 1927, Second Contribution, p. 511), i.e., strictly speak-
ing, independent of the boundary conditions [note, that Schrödinger’s
quantization conditions are—like de Broglie’s ones, which interprete
Bohr’s “quantum orbits” as standing waves (de Broglie, 1925)—to a large
amount classical boundary conditions, cf. (Heisenberg, 1977)];

2. There should be a special mathematical method for solving the station-
ary Schrödinger equation, which accounts for the nonclassical character
of the quantization problem, i.e., which is different from the classical
methods for calculating the eigenmodes of strings, resonators and so on,
cf. (Schrödinger, 1927, Second Contribution, p. 513). The determination
of the solution without using the boundary conditions shows, that they
exhibit “maximum strength” in the sense of (Einstein, 1977);

3. The derivation should uniquely decide, that the energy rather than the
frequency values are discretized. For if one replaces E with hν instead
of hν with E, one obtains the stationary equation Hψ = hνψ , whence,
primarily, the frequency, ν, would be discretized; frequency discretiza-
tion, however, is a classical phenomenon cf. (Schrödinger, 1927, Second
Contribution, pp. 511, 519).

On discussing the pathes for classical and quantum particles, Schrödinger
concluded, that

We are faced here with the full force of the logical opposition between an
either–or (point mechanics)

and a
both–and (wave mechanics)

This would not matter much, if the old system were to be dropped entirely and
to be replaced by the new. Unfortunately, this is not the case. (Schrödinger,
1933)

A formulation of this “both–and” can be seen in the path integral represen-
tation (Feynman, 1949), cf. (Lübbig, 1999). The exploitation of configurations
rather than paths exhibits the advantage, that the former ones apply in both CM
and QM, while the latter ones do not. More important, however, Schrödinger’s
consideration means, that only a deeper analysis of the roots and foundations of
CM will provide the key for the understanding of QM. Newton’s representation
of CM has to be replaced with Euler’s one, and Euler’s method of maxima and
minima has to be generalized. Following Helmholtz, the energy law has to be
formulated in terms of configurations, including the impossibility of a perpetuum
mobile and accounting for the relation between energy and extension. Then, it
turns out, that CM itself contains the necessary means for going beyond its own
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frame. This way, the relationship between CM and non-CM becomes well de-
fined, and the physical content of non-CM is formulated on equal footing with the
mathematical method (and vice versa). An example for this is the reformulation
of Einstein’s criterion in terms of Whittaker’s solution method, what allows for
the formulation of quantization as selection problem. Moreover, ad hoc assump-
tions, which may be suggested by experimental results, but are not supported
by the axiomatics of CM, can be avoided. The wave and particle aspects can be
obtained from the time-dependent Schrödinger equation and its solutions (Enders
and Suisky, Einführung in die Quantenfeldtheorie des Festkörpers, manuscript in
preparation). The classical path in phase space is replaced with the wave functions
in space and momentum representations. The wave functions take also the role
of the initial conditions, which “are not free, but also have to obey certain laws”
(Einstein, 1923).

The dynamics in space and in momentum space is treated in parallel. As a
consequence, the Schrödinger equation in momentum representation is obtained
at once with the one in location representation. This, too, enables one to keep
maximum contact to CM and to explain, why QM is a nonclassical mechanics of
conservative systems, where the classical potential and kinetic energy functions
and, consequently, the classical Lagrange and Hamilton functions still apply.
This includes a natural explanation of “the peculiar significance of the energy in
quantum mechanics” (Weyl, 1950).

Moreover, the approach presented here allows for deriving rather than pos-
tulating fundamental properties of many-body quantum systems. The (stationary)
states of systems of equal particles, both classical and quantum ones, are invariant
against permutations of the labels of the particles involved, cf. (Bach, 1997). As
a consequence, the knowledge of only their conserved quantities (total energy,
total momentum, etc) does not allow for distinguishing these particles, neither
in quantum, nor in classical systems. The permutation (anti-)symmetry of the
wavefunction is a consequence of this permutation invariance of the states. In-
deed, according to Einstein’s derivation of Planck’s distribution (Einstein, 1907),
the differences between the classical and the quantum distribution laws results
from the difference between the energetic spectrum of a single classical (contin-
uous spectrum) and a single quantum oscillator (discrete spectrum), whereas the
(in)distinguishability of particles (systems) involved plays no role in Einstein’s
derivation. Nevertheless, while equal classical bodies are always distinguishable
through their location, equal quantum particles are indistinguishable within a com-
mon system, because it is impossible to assign individual properties to them (it is
the latter point, which avoids the collision with the principle of abstract identity).
In this light, Gibbs’ paradox seems to suggest, that not the (in)distinguishability of
particles is important for the statistical properties of systems, but that of their states.

For the quantization of fields, finally, our approach yields an explanation for
the fact, that, within the method of normal-mode expansion, only the temporal,
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but not the spatial part of the field variables is concerned, (cf. Schleich, 2001).
Indeed, only those variables are subject to the quantization procedure, the possi-
ble values of which are, in the classical case of (stationary) states, restricted by
the energy law. Thus, the spatial extension of the normal modes being fixed by
the boundary conditions is not subject to quantization. The classical field energy
(density) is determined by the normal-mode coordinates (the amplitudes of the
normal modes) and, thus, limits these. As a consequence, the time-depending
expansion coefficients in the normal-mode expansion are quantized. When for-
mulating this expansion such, that these expansion coefficients get the dimension
of length, their quantization can be performed in complete analogy to that of
the harmonic oscillator, without invoking additional assumptions or new con-
stants (Enders and Suisky, Einführung in die Quantenfeldtheorie des Festkörpers,
manuscript in preparation). Moreover, one could try to quantize a field in the space
spanned by independent dynamical field variables, e.g., electric and magnetic field
strengths, E and H. The wave functions would be, say, ψ(E) and φ(H) rather than
ψ(x) and φ(p). This could separate the quantization problem from the spatial and
temporal field distributions and, thus, simplify the realization of Einstein’s imag-
ination of a “spatially granular” (Einstein, 1905) structure of the electromagnetic
field.
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Enders, P. and Suisky, D. (2005). Über das Auswahlproblem in der klassischen Mechanik und in der

Quantenmechanik. Nova Acta Leopoldina 18(Suppl), 13–17.
Euler, L. (1912). Leonardi Euleri Opera Omnia sub auspiciis Societatis Scientarium Naturalium
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